Feature Engineering and Selection: A Practical Approach for Predictive Models (Hardcover)

Feature Engineering and Selection: A Practical Approach for Predictive Models By Max Kuhn, Kjell Johnson Cover Image
Usually Ships in 1-5 Days


The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

About the Author

Max Kuhn, Ph.D., is a software engineer at RStudio. He worked in 18 years in drug discovery and medical diagnostics applying predictive models to real data. He has authored numerous R packages for predictive modeling and machine learning. Kjell Johnson, Ph.D., is the owner and founder of Stat Tenacity, a firm that provides statistical and predictive modeling consulting services. He has taught short courses on predictive modeling for the American Society for Quality, American Chemical Society, International Biometric Society, and for many corporations.Kuhn and Johnson have also authored Applied Predictive Modeling, which is a comprehensive, practical guide to the process of building a predictive model. The text won the 2014 Technometrics Ziegel Prize for Outstanding Book.
Product Details
ISBN: 9781138079229
ISBN-10: 1138079227
Publisher: CRC Press
Publication Date: August 2nd, 2019
Pages: 298
Language: English